Blind Data Classification Using Hyper-Dimensional Convex Polytopes
نویسندگان
چکیده
A blind classification algorithm is presented that uses hyperdimensional geometric algorithms to locate a hypothesis, in the form of a convex polytope or hyper-sphere. The convex polytope geometric model provides a well-fitted class representation that does not require training with instances of opposing classes. Further, the classification algorithm creates models for as many training classes of data as are available resulting in a hybrid anomaly/signature-based classifier. A method for handling non-numeric data types is explained. Classification accuracy is enhanced through the introduction of a tolerance metric, ß, which compensates for intra-class disjunctions, statistical outliers, and input noise in the training data. The convex polytope classification algorithm is successfully tested with the voting database from the UCI Machine Learning Repository (Blake and Merz 1998), and compared to a simpler geometric model using hyper-spheres derived from the k-means clustering algorithm. Testing results show the convex polytope model’s tighter fit in the attribute space provides superior blind data classification.
منابع مشابه
Prologue: Regular polytopes
Current Version January 1, 2005 To motivate the study of finite reflection groups and Coxeter groups more generally, I’ll begin by briefly sketching the classification of regular polytopes. Convex polytopes are fundamental objects in mathematics which can be viewed in a number of equivalent ways: as the convex hull of a finite set of points in R, as the intersection of a finite number of half-s...
متن کاملNonrational polytopes and compactifications of quasitori
Nonrational nonsimple convex polytopes can be considered in quasilattices. We prove that the corresponding complex quasitori can be compactified by suitably adding smaller dimensional orbits. The final objects, constructed as complex quotients, are spaces stratified by complex quasifolds that perfectly mimic the features of toric varieties associated to rational convex polytopes. 2000 Mathemati...
متن کامل3-Dimensional Lattice Polytopes Without Interior Lattice Points
A theorem of Howe states that every 3-dimensional lattice polytope P whose only lattice points are its vertices, is a Cayley polytope, i.e. P is the convex hull of two lattice polygons with distance one. We want to generalize this result by classifying 3-dimensional lattice polytopes without interior lattice points. The main result will be, that they are up to finite many exceptions either Cayl...
متن کاملA new blind method for detecting novel steganography
Steganography is the art of hiding a message in plain sight. Modern steganographic tools that conceal data in innocuous-looking digital image files are widely available. The use of such tools by terrorists, hostile states, criminal organizations, etc., to camouflage the planning and coordination of their illicit activities poses a serious challenge. Most steganography detection tools rely on si...
متن کاملFace Numbers of 4-Polytopes and 3-Spheres
Steinitz (1906) gave a remarkably simple and explicit description of the set of all f -vectors f(P ) = (f0, f1, f2) of all 3-dimensional convex polytopes. His result also identifies the simple and the simplicial 3-dimensional polytopes as the only extreme cases. Moreover, it can be extended to strongly regular CW 2-spheres (topological objects), and further to Eulerian lattices of length 4 (com...
متن کامل